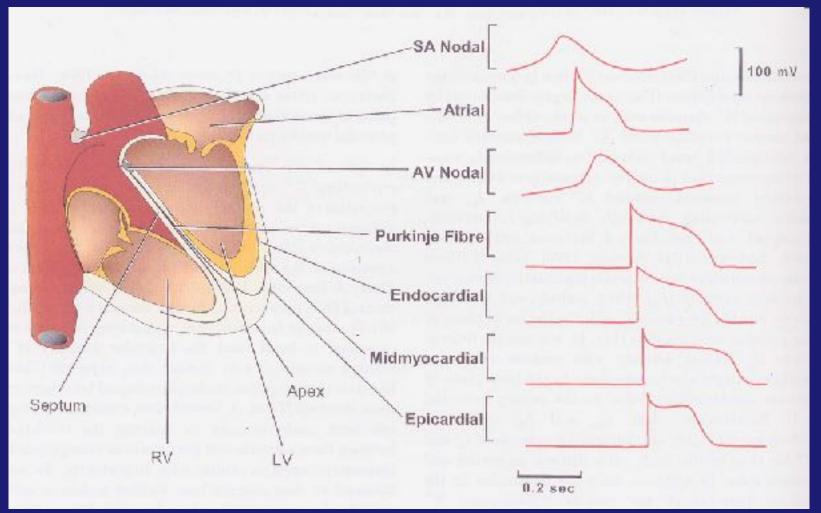


CARDIAC CHANNELOPATHIES

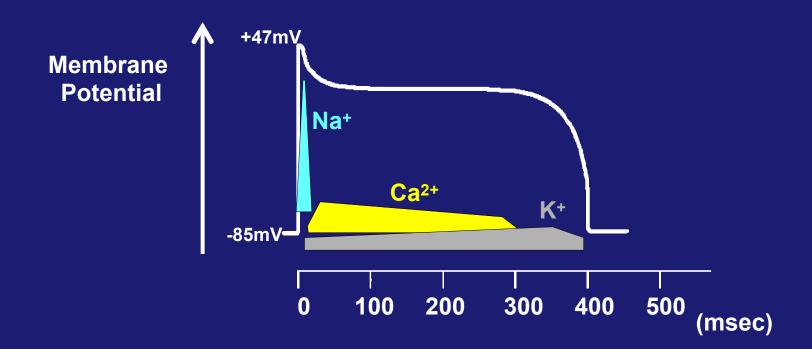
Madhur A. Roberts Cardiovascular Disease Fellow UT Medical Center, Knoxville.

Outline


- ✤ Introduction
- Overview of cardiac action potential
- Structure of ion channels
- Long QT Syndrome
- Short QT Syndrome
- Brugada Syndrome
- Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)
- ✤ Idiopathic ventricular fibrillation
- Progressive cardiac conduction defect
- Ankyrin-B Syndrome

Introduction

- Cardiac arrhythmias and conduction defects result from abnormalities in three main families of proteins:
 - Contractile proteins (e.g. HOCM)
 - Cytoskeletal proteins (eg. DCM)
 - -Ion channels and their regulators

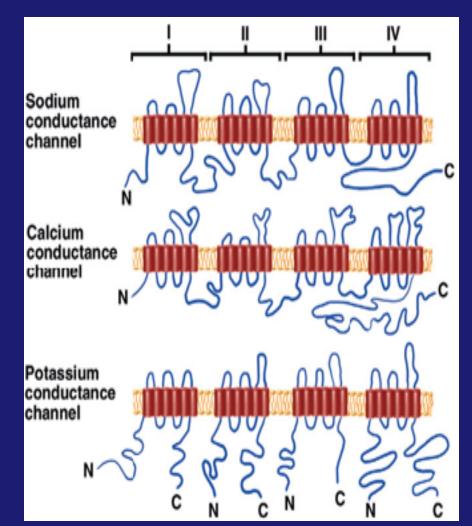

Action Potential Waveforms in Different Regions of the Heart

Nerbonne JM. J of Physiology 2000, 525.2;285

The Cardiac Action Potential

Structure of Ion Channels

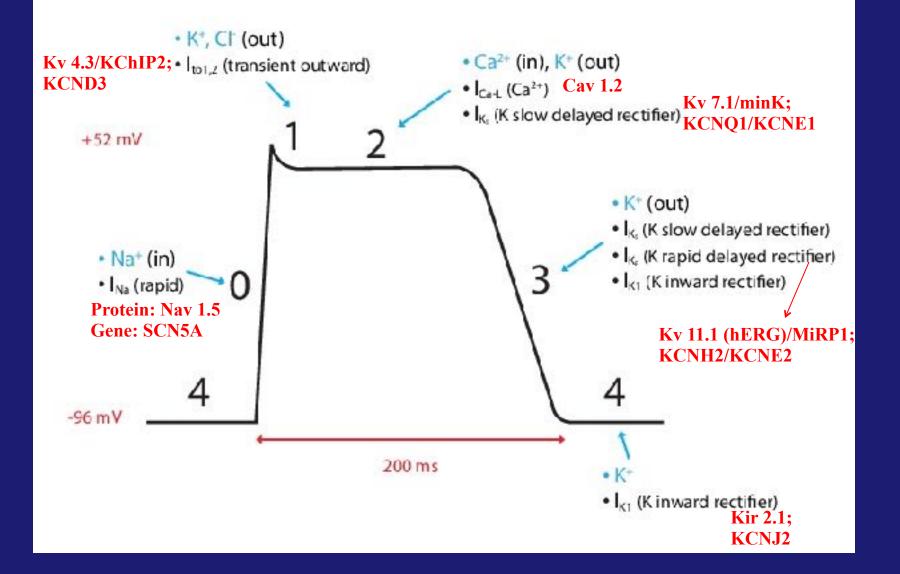
Alpha Subunit

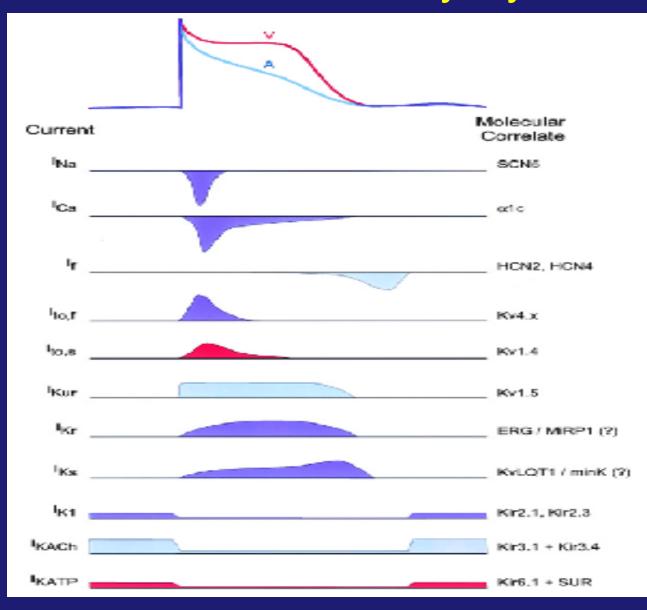

(pore forming)

- Voltage-gated Na+ and Ca2+ channels:
 - single tetramer

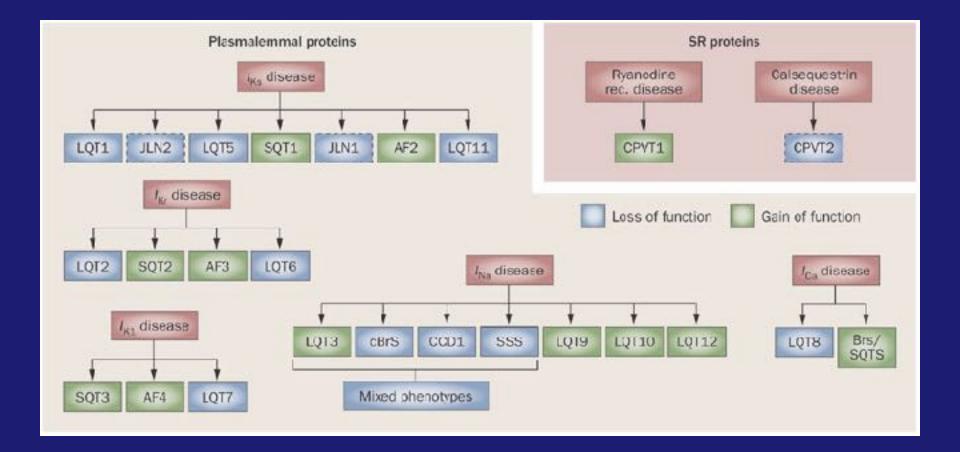
ION

CHANNEL

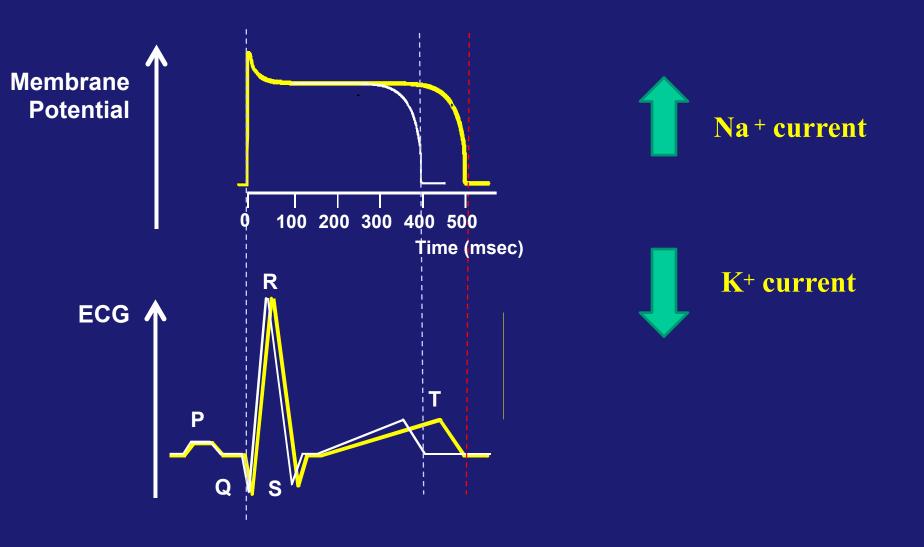

- four covalently linked repeats of the six transmembrane–spanning motifs.
- Voltage-gated K+ channels:
 - four separate subunits,
 - each containing a single six transmembrane–spanning motif.
- Inwardly rectifying K+ channels
 - In contrast to voltage-gated K+ channel alpha subunits, the Kir alpha subunits have only two (not six) transmembrane domains.


Auxillary

subunits (β, γ, δ)

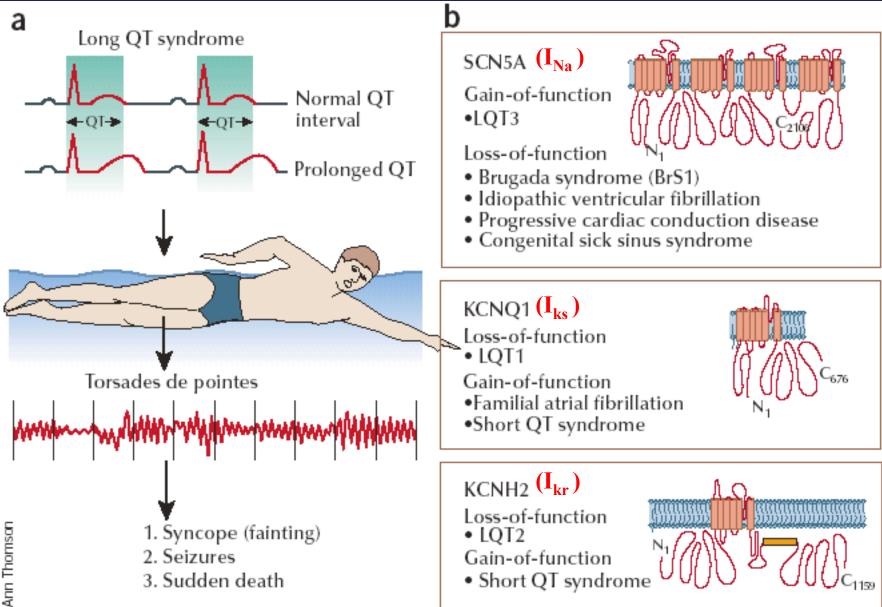

Relationship Between Cardiac Action Potential and Ion Channel Currents

Ionic Basis of the Action Potential in Mammalian Cardiomyocytes


Overlap in Gene Mutations

Long QT Syndrome (LQTS)

- Congenital LQTS: 1 in 2500 to 10,000 in the general population
- SCD is relatively common (3000 to 4000 annual sudden deaths in childhood in the United States)
- An untreated mortality rate of 50% in 10 years.
- The primary symptoms in patients with LQTS include palpitations, syncope, seizures, and cardiac arrest.
- Majority of patients are asymptomatic
 - One third present with syncope or malignant arrythmia (most common being torsades)



- Acquired versus inherited
- Mutations in seven genes have been identified thus far in patients with genetic LQTS
- Two defined patterns of inheritance:
 - Autosomal Dominant (Romano-Ward Syndrome): Includes LQT Syndrome 1 to 12.
 - Autosomal Recessive (Jervell Lang-Nielsen Syndrome): Associated with deafness. Thus far has only been described in LQT1 and LQT5 (i.e. the genes encoding for I_{ks} current).

- Andersen-Tawil syndrome (LQT7)
 - rare autosomal dominant;
 - episodes of paralysis,
 - ventricular arrhythmias, and dysmorphic features ;
 - mutations in the gene KCNJ2, located on chromosome 17q23, which encodes the inward rectifying potassium channel Kir2.1
 - Characteristic T-U wave morphologies have also been identified in patients with Andersen syndrome:
 - Prolonged terminal T wave downslope
 - Biphasic U waves in limb leads
 - Wide T-U junction (in contrast to bifid T waves in LQT2)
 - Enlarged U waves

Locus rame	Chromosomal locus	Gene symbol	Protein (symbol)	Current	Action potential	In vitro characterization	Gene- specific therapy*	Clinical syndrome - haterozygous mutation	Cinical syndrome - homozygous mutation	
UÇTI.	11515.5	KONQ:	t _{au} potassium channel c- rubueit (KvLCTI)	196	Dalayed phase 3	borrinant negative suppression, trafficking delect, atmornal gating, reduced response	Bata- biukers', polassum channel operans'	R-W	54,44	40-55
LGTZ	929-629i	ACNH2	l _{eo} potsosium channel c- subunit (HERG)	1 187	Delayed phase 3	Supression Supression traffiction abnormal gating	Beta- bicchars', potacoum supplement', potacoum chennel	X-W	NK.	35-4
							fexofenadine and			
LGTS	3p21	SCV54	Cardiac Rodum channai c- subueit (Nav 1.3)	† INa	Prolonged Dhase 2	Abrommal gating: sustained current, dower inactivation, factor recovery, increased window ourset	Sadium channel biochers (mexiletine)*	A-W	N5.	8-10
LCTI	4925-927	ANK2	Ankyrin B. (ANKD)	L Nocl, Na/K ATP/ase. InsP3		Loss of expression and mislocalization	None prepaged	R-W	NP.	
LQTS	21422.1 422.2	KONE:	t _{Ka} potsesium drannei Sets- SUDUnit IMinKi	1 DGs	Dolayed phase 3	Perimant negative suppression, abnormal gating, adsced response to beta A't signal	Beta bickers. potarisum supplement, patarisium channel openers	n.w	34.4	
igns	081972.84972.2	871162	I _K potassum duannei a-da subueit (MIRP)	1.167	Dolayed phase 3	Reduced current density and abromatichanist dating	Rata biockera, polansium subcienent, polassi im channel osenera, fexofenadine and thapsigargin	2.A	μs	
LQT7/Noceraer	17423.1-424.2	KON12	l _{en} potseelum channel (Kirz.L)	1.001	Delayed phase 3	borrinant negative suppression, nonfunctional shawnels, trafficking defect, schormal sating	hore proposed	H#P	NR.	
LCT3/Timothy	12513.3	CACVATE	Voltage- gotod Lafuum channel, CaV1.2	t KCa	Delayed phase 3	Loss of inactivation	Calrian chennel Dockers'	R-W	Name	
LCTP	Sp25	04/3	Caveolin-0	T INB		Increased late INa	Sodium charriel Dockers (nexilatina)			
LGLIO	11423	30418	Carlias sodum channel beta-4 subunit	T INa	Prolong the action petretral plateau	Increased late INa	Sueium channel hiockers (mextetine)	KnW and 2.1 Ar8		
LÇ111	2Q21-22	114642	A-kinase anchoring proteins	1 DKS		Reduced phosphorylation of the Kis channel	Bita- bicckers			
LCL15	50411-5	50793	Syntrophin	T INS		increased late in a	Sodium channel biockere			

NATURE MEDICINE VOLUME 10 | NUMBER 5 | MAY 2004 463

LQT: Triggers of Arrhythmia

- Genotype-phenotype correlations have been performed:
 - LQT1: Events related to swimming (occurring either immediately after diving into water or during recreational or competitive swimming activities)

LQT3: At highest risk of events when at rest or asleep

LQT: Prognosis

- The clinical course of LQTS is influenced by the specific analysis from the International Registry:
 - High risk (≥50 percent) patients with QTc ≥0.50 sec who have LQT1 or LQT2 or (if male) LQT3
 - Intermediate risk (30 to 49 percent) female patients with LQT3 and QTc \geq 0.50 sec or patients with QTc <0.50 sec who have LQT3 or (if female) LQT2
 - Low risk (<30 percent) patients with QTc <0.50 sec who have LQT1 or (if male) LQT2

LQT: Management

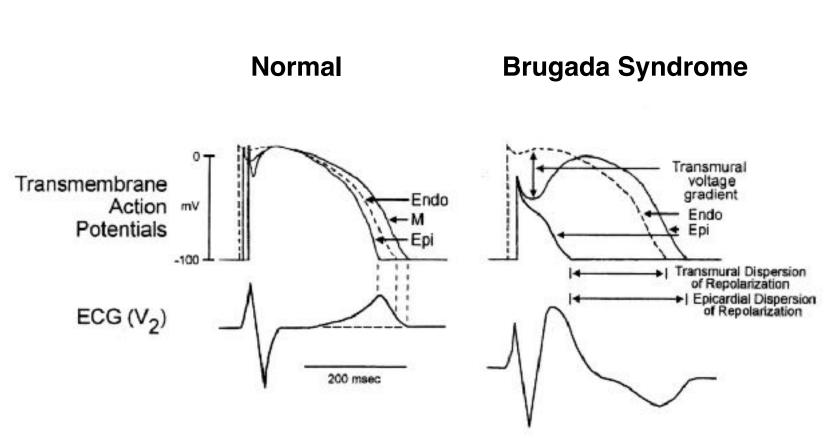
- The mortality rate in LQTS is reduced with earlier identification of affected patients and treatment:
 - beta blocker therapy,
 - sports restriction in some
 - avoidance of medications known to lengthen the QTc interval.
- High-risk patients including those with persistent symptoms despite beta blocker therapy may benefit from ICD implantation or left cardiac sympathetic denervation.
- Beta blockers are extremely protective in LQT1 patients, moderately protective in LQT2, and may not be sufficiently protective for those with LQT3. Consequently, targeting the pathologic, LQT3-associated late sodium current with agents such as mexiletine, flecainide, or ranolazine may represent a gene-specific therapeutic option for LQT3.

Short QT syndrome

Short QT syndrome

- Newly described in 2000
- Although not properly defined, QT<330 ms should raise high suspicion
- Three gene mutations identified so far: KCNH2 (I_{kr}), KCNQ1 (I_{ks}), KCNJ2 (I_{ki}).
- Clinically episodes of syncope, atrial fibrillation and/ or life-threatening cardiac arrhythmias.
- Tx: ICD. Research underway with class III antiarrhythmics that prolong QT (eg. Quinidine).

Brugada Syndrome

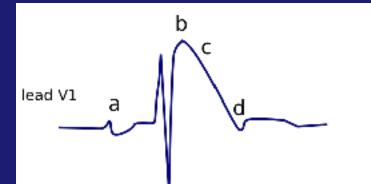

Brugada Syndrome

- Gene mutations of SCN5A (sodium channel), resulting in a <u>loss</u> of sodium channel function (either decreased expression or acceleration of inactivation) has been found in 10 to 30 percent of patients with Brugada syndrome.
 - In contrast, patients with congenital LQTS have SCN5A mutations that results in a <u>gain</u> in sodium channel function.
- Autosomal dominant transmission with incomplete penetrance
- A distinct clinical syndrome with syncope episodes and sudden cardiac death (fast polymorphic VT)

Brugada Syndrome

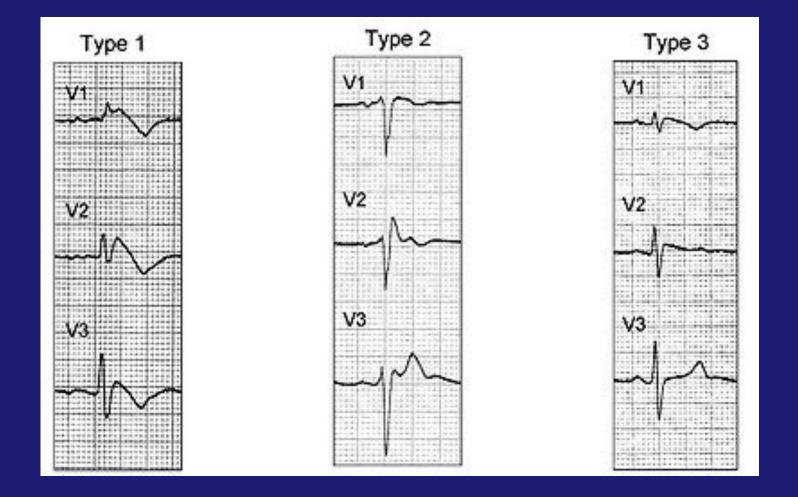
- This syndrome is estimated to be responsible for 20-50% of all sudden death in patients with an apparently normal heart.
- Prevalence varies from 5-50:10,000; largely depending on geographic location (endemic in southeast Asia).
- SUDS (Sudden Unexpected Death Syndrome) in Southeast Asia is a form of Brugada syndrome; most common cause of death in young males in Thailand.
- Male: Female 10:1

Loss of Normal Heterogeneity with Increased Dispersion of Repolarization


The right ventricle is most affected in Brugada syndrome, and particularly (but not specifically) the right ventricular outflow tract.

12-lead electrocardiogram (ECG) from a patient with the Brugada syndrome shows downsloping ST elevation

ST segment elevation and T wave inversion in the right precord a leads V1 and V2 (arrows); the Q (S is normal. The widened G wave in left lateral leads that is characteristic of right bundle branch block is absent. Courtesy of Dr Rory Childers, University of Chicago,


RBBB pattern and >2mm ST segment elevation in V1-V3 in the absence of ischemia, electrolyte imbalance, and structural heart disease

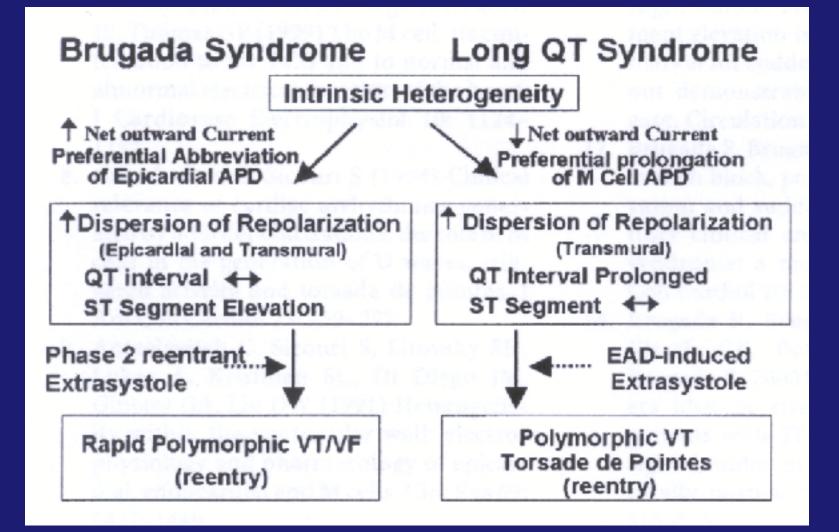
ECG characteristics in Brugada Syndrome a. Broad P wave with some PQ prolongation

- b. J point elevation
- c. Coved type ST segment elevation
- d. Inverted T wave

Brugada Syndrome: ECG

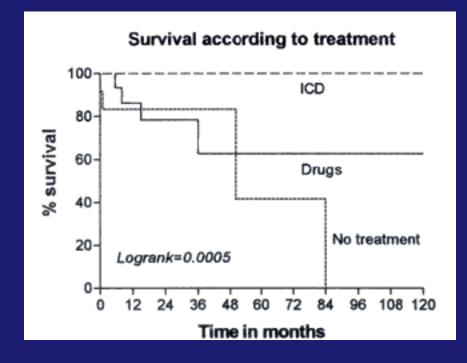
Brugada Syndrome: Factors / Drugs that Enhance ECG Pattern

- Na+ channel blockers
- alpha agonists, vagotonic agents, beta blockers
- fever
- alcohol, cocaine
- severe ischemia
- tricyclic antidepressants, antihistaminics


Brugada Syndrome: Diagnostic Criteria

• Major criteria:

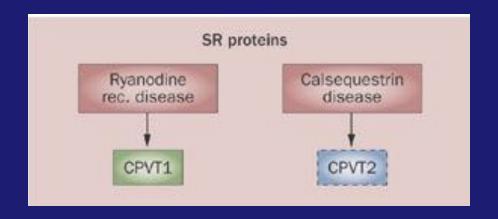
- 1. presence of ECG marker (Type 1) in structurally normal hearts
- 2. appearance of ECG marker after administration of Na+ channel blockers (Type 2&3)


• Minor criteria:

- 1. family history of sudden cardiac death
- 2. syncope of unknown origin
- 3. documented ventricular tachycardia/fibrillation
- 4. genetic mutation of ion channels

Brugada: Management

• Although pharmacologic therapy has been tried, the only therapy with proven efficacy in preventing sudden death is an implantable cardioverter-defibrillator (ICD).



Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)

CPVT

- Raynodine receptors (RyR2 gene)
 - Responsible for release of calcium from the sarcoplasmic reticulumn and are activated by incoming calcium; therefore they are a activated Ca channels.
 - Autosomal Dominant

- Calsequestrin 2 gene
 - Encodes a major calcium reservoir protein within the sarcoplasmic reticulum.
 - Autosomal recessive

CPVT

- At risk for VT (specifically bidirectional VT), ventricular fibrillation, and sudden death, especially in association with stress or exercise.
- At rest, the ECG typically demonstrates frequent premature ventricular contractions (PVC) and nonsustained polymorphic VT.
 - The QT interval is normal, which distinguishes it from LQTS, and there are no ST segment changes differentiating it from Brugada syndrome.
- At present, therapies include beta blockers, flecainide, and ICD or left cardiac sympathetic denervation for high risk patients and those with symptoms despite beta blocker therapy.
- Avoid competitive sports

12-lead ECG in child with catecholaminergic polymorphic ventricular tachycardia (CPVT)

This is the ECG of a five-year-old with recurrent exertional syncope. The ECG demonstrates bidirectional VT. This child underwent genetic testing and was positive for the RyR2 mutation.

Idiopathic Ventricular Fibrillation

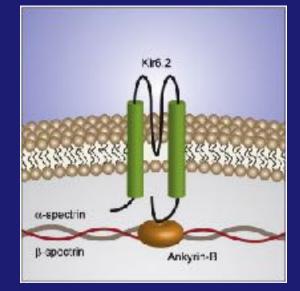
- Absence of identifying structural or genetic abnormalities to explain the VF or the out-of-hospital cardiac arrest
- May account for as much as 10% of sudden deaths, especially in the young.
- About 30% of IVF-labeled individuals will have recurrent episodes of VF.
- Like BrS, loss of function SCN5A mutations have been identified.
 - Identified mutations in other arrhythmia susceptibility genes, such as ANKB, which encodes for ankyrin-B, and RYR2, which encodes for the cardiac ryanodine receptor.

Idiopathic V-fib

- J-point elevation (1 mm above baseline) on inferolateral electrocardiographic leads (so-called early repolarization)
 - was significantly overrepresented (31%)
 - was greater in magnitude in subjects who experienced cardiac arrest caused by IVF compared with age-, gender-, race-, and level of physical activity-matched controls.
- These patients with early repolarization were more often males and had a personal history of syncope or cardiac arrest during sleep

Progressive Cardiac Conduction Defect

- Lev-Lenègre disease
- Progressive (age-related) alteration of impulse propagation through the His-Purkinje system, with right or left bundle branch block and widening of the QRS complex, leading to complete atrioventricular (AV) block, syncope, and occasionally sudden death.
- Over 30 PCCD-associated mutations in SCN5A (loss of function), autosomal dominant.
- PCCD is the prevailing phenotype in BrS-associated *SCN5A* mutation carriers, where the penetrance of conduction defects was 76%.


Sick Sinus Syndrome

- Inappropriate sinus bradycardia, sinus arrest, atrial standstill, tachycardia-bradycardia syndrome, or chronotropic incompetence
- Acquired: Commonly occurs in older adults (1 in 600 cardiac patients older than 65 years) with acquired cardiac conditions.
- Idiopathic: No identifiable cardiac anomalies; can occur at any age, including in utero.
 - Additionally, familial forms of idiopathic SND consistent with autosomal dominant inheritance with reduced penetrance and recessive forms with complete penetrance have been reported.
- So far implicated three genes—SCN5A, HCN4 (encodes the socalled I_f or pacemaker current and plays a key role in automaticity of the sinus node), and ANKB.

Ankyrin-B Syndrome

ANK2 gene → Ankyrin-B protein Involved in anchoring the Na⁺,K⁺-ATPase, Na⁺/Ca²⁺ exchanger, and InsP3 receptor to specialized microdomains in the cardiomyocyte transverse tubules.

- Loss of function mutations of *ANK2* were shown originally to cause a dominantly inherited cardiac arrhythmia with an increased risk for SCD associated with a prolonged QT interval
- LQT4 \rightarrow more correctly renamed SSS with bradycardia, or the ankyrin-B syndrome.

References

- Braunwald's Heart Disease Textbook, 9th Edition
- Hurt's The Heart Textbook, 13th Edition

GO VOLS!!

